X. ÜBUNG zu GRUNDZÜGE der ALGEBRA

Abgabe: MI, 10. JAN. 2007, 11:00 UHR in den orangen Kasten Nr. 8 http://math-www.upb.de/~dirk/Vorlesungen/GZ-Algebra/

Bitte geben Sie außer Ihrem Namen auch deutlich die Übungsgruppe mit an.

Klausurtermin: Freitag, 9.2.2007, 16:00 - 19:00 Uhr im Hörsaal C1.

- **29.** Aufgabe: Man zeige, dass es keine einfachen Gruppen der folgenden Ordnungen n gibt.
 - a) n = 30;
 - **b)** n = 56;
 - c) n = 105;
 - d) n = 132.

ERINNERUNG: Eine Permutation $\sigma \in S_n$ ist ein Zykel, wenn es ein $k \in \{1, \ldots, n\}$ und paarweise verschiedene $i_1, \ldots, i_k \in \{1, \ldots, n\}$ gibt mit $\sigma(i_p) = i_{p+1}$ (für $1 \leq p < k$) und $\sigma(i_k) = i_1$, sowie $\sigma(j) = j$ für alle j mit $j \notin \{i_1, \ldots, i_k\}$. Man schreibt $\sigma = (i_1 i_2 \ldots i_k)$ und nennt σ genauer einen k-Zykel (oder einen Zykel der Länge k). Transpositionen sind gerade die 2-Zykel. Zwei Zykel $(i_1 i_2 \ldots i_k)$ und $(j_1 j_2 \ldots j_l)$ in S_n heißen disjunkt, falls die Mengen $\{i_1, i_2, \ldots, i_k\}$ und $\{j_1, j_2, \ldots, j_l\}$ disjunkt sind. Die Bahnenzerlegung zeigt, dass jedes $\sigma \in S_n$ ein Produkt paarweise disjunkter Zykeln ist; je zwei disjunkte Zykeln kommutieren offenbar. (Vgl. Vorlesung zum Zusammenhang mit Gruppenaktionen und Bahnen.)

- **30. Aufgabe:** a) Sei $\sigma = (i_1 i_2 \dots i_k) \in S_n$ ein Zykel und $\gamma \in S_n$. Dann ist $\gamma \sigma \gamma^{-1}$ der Zykel $(\gamma(i_1) \gamma(i_2) \dots \gamma(i_k))$.
 - b) Sei $n \geq 3$. Jeder 3-Zykel in S_n ist in A_n .
- **31.** Aufgabe: Ziel der folgenden Aufgabe ist der Teil g), der aussagt, dass die alternierende Gruppe A_n für $n \geq 5$ einfach ist. Wir nehmen im folgenden stets $n \geq 5$ an (auch wenn manche der Aussagen auch für kleinere n richtig sind).
- a) Man zeige: Jedes $\sigma \in A_n$ ist ein Produkt von 3-Zykeln. (HINWEIS: Aufgabe 2.; man betrachte (ab)(cd) und (ab)(ac) für paarweise verschiedene a, b, c, d.)
- b) Man zeige: Die 3-Zykeln bilden eine einzige Konjugationsklasse in A_n (sic!). (HINWEIS: Aufgabe 30.a.; warum ist hier die Voraussetzung $n \geq 5$ wichtig?)

- c) Man zeige: Ist N ein Normalteiler in A_n , der einen 3-Zykel enthält, so ist $N = A_n$.
- **d)** Sei $\sigma \in A_n$ ein Produkt disjunkter Zykeln, $\sigma = \sigma_1 \cdot \ldots \cdot \sigma_s$, wobei $\sigma_1 = (i_1 \ldots i_r)$ mit $r \geq 4$ gilt. Sei $\delta = (i_1 i_2 i_3) \in A_n$. Man zeige $\sigma^{-1}(\delta \sigma \delta^{-1}) = (i_1 i_3 i_r)$.
- e) Sei $\sigma \in A_n$ ein Produkt disjunkter Zykeln, $\sigma = \sigma_1 \cdot \ldots \cdot \sigma_s$, wobei $\sigma_1 = (i_1 i_2 i_3)$ und $\sigma_2 = (i_4 i_5 i_6)$ gilt. Sei $\delta = (i_1 i_2 i_4) \in A_n$. Man zeige $\sigma^{-1}(\delta \sigma \delta^{-1}) = (i_1 i_4 i_2 i_6 i_3)$.
- f) Sei $\sigma \in A_n$ ein Produkt disjunkter Zykeln, $\sigma = \sigma_1 \cdot \ldots \cdot \sigma_s$, wobei $\sigma_1 = (i_1 i_2 i_3)$ und $\sigma_2, \ldots, \sigma_s$ (disjunkte) 2-Zykeln sind. Man zeige $\sigma^2 = (i_1 i_3 i_2)$.
- g) Man zeige, dass A_n eine einfache Gruppe ist. (HINWEIS: Sei N in A_n ein nicht-trivialer Normalteiler. Man zeige $N = A_n$ mit den vorherigen Aufgabenteilen.) 14 P.

Wir wünschen erholsame Festtage und einen guten Start ins neue Jahr!